Effect of nanocelluloses on the microstructure and mechanical performance of CAC cementitious matrices
This paper analyses the influence of the addition of low content (0.1 to 0.8 wt%) of nanofibrillated cellulose (NFC) or cellulose nanocrystals (CNC) on the flexural performance, durability and microstructure of calcium aluminate cement (CAC) cured at 20 °C or 60 °C. The relationship between the mech...
Gespeichert in:
Veröffentlicht in: | Cement and concrete research 2019-05, Vol.119, p.64-76 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper analyses the influence of the addition of low content (0.1 to 0.8 wt%) of nanofibrillated cellulose (NFC) or cellulose nanocrystals (CNC) on the flexural performance, durability and microstructure of calcium aluminate cement (CAC) cured at 20 °C or 60 °C. The relationship between the mechanical properties and the microstructure of the cement was evaluated after curing and further after accelerated aging by flexural testing and X-ray diffraction and by backscattered electron imaging, respectively. The addition of 0.1–0.2 wt% of either nanocellulose led to an increase in the modulus of rupture (MOR) and modulus of elasticity (MOE) values. Moreover, CNC was effective to counteract the negative effects of increased porosity of CAC cements before and after aging, significantly improving their mechanical performance and durability. This effect was not observed in Portland cement systems, in which the addition of this low nanocellulose content did not lead to significant changes. |
---|---|
ISSN: | 0008-8846 1873-3948 |
DOI: | 10.1016/j.cemconres.2019.02.006 |