Sincohmap: Land-Cover and Vegetation Mapping Using Multi-Temporal Sentinel-1 Interferometric Coherence

InSAR coherence is a promising parameter for land-cover classification and mapping. The ESA SEOM SInCohMap project is devised to test and analyze multi-temporal InSAR coherence potentialities exploiting dense multitemporal data from the Sentinel-1 constellation. In the framework of the project, this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vicente-Guijalba, F., Jacob, A., Lopez-Sanchez, J.M., Lopez-Martinez, C., Duro, J., Notarnicola, C., Ziolkowski, D., Mestre-Quereda, A., Pottier, E., Mallorqui, J. J., Lavalle, M., Engdahl, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:InSAR coherence is a promising parameter for land-cover classification and mapping. The ESA SEOM SInCohMap project is devised to test and analyze multi-temporal InSAR coherence potentialities exploiting dense multitemporal data from the Sentinel-1 constellation. In the framework of the project, this paper shows the first classification results using machine learning algorithms over a two-year period of InSAR coherence data. The evaluation is performed on the test site of Doñana (Seville, Southwestern Spain), mainly an agricultural area where different land covers can be identified. Classification results exploiting InSAR coherence shows accuracies around 80 % for this site.
ISSN:2153-7003
DOI:10.1109/IGARSS.2018.8517926