Some constructions for the fractional Laplacian on noncompact manifolds

We give a definition of the fractional Laplacian on some noncompact manifolds, through an extension problem introduced by Caffarelli–Silvestre. While this definition in the compact case is straightforward, in the noncompact setting one needs to have a precise control of the behavior of the metric at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática iberoamericana 2015-01, Vol.31 (2), p.681-712
Hauptverfasser: Banica, Valeria, del Mar González, María, Sáez, Mariel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a definition of the fractional Laplacian on some noncompact manifolds, through an extension problem introduced by Caffarelli–Silvestre. While this definition in the compact case is straightforward, in the noncompact setting one needs to have a precise control of the behavior of the metric at infinity and geometry plays a crucial role. First we give explicit calculations in the hyperbolic space, including a formula for the kernel and a trace Sobolev inequality. Then we consider more general noncompact manifolds, where the problem reduces to obtain suitable upper bounds for the heat kernel.
ISSN:0213-2230
2235-0616
DOI:10.4171/RMI/850