Ethanol induces hydroxytyrosol formation in humans

Hydroxytyrosol generation due to the interaction of ethanol with dopamine metabolism. Previous studies in animals have shown an increase of hydroxytyrosol (OHTyr), a potent phenolic antioxidant and a minor metabolite of dopamine (also called 3,4-dihydroxyphenylethanol or DOPET), after ethanol intake...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacological research 2015-05, Vol.95-96, p.27-33
Hauptverfasser: Pérez-Mañá, Clara, Farré, Magí, Pujadas, Mitona, Mustata, Cristina, Menoyo, Esther, Pastor, Antoni, Langohr, Klaus, de la Torre, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydroxytyrosol generation due to the interaction of ethanol with dopamine metabolism. Previous studies in animals have shown an increase of hydroxytyrosol (OHTyr), a potent phenolic antioxidant and a minor metabolite of dopamine (also called 3,4-dihydroxyphenylethanol or DOPET), after ethanol intake. The interaction between ethanol and dopamine metabolism is the probable mechanism involved. The aim of the study was to establish the contribution of the dose of ethanol on OHTyr formation. 24 healthy male volunteers were included. Subjects were distributed in three different cohorts and each volunteer received two doses of ethanol or placebo. Doses of ethanol administered were 6, 12, 18, 24, 30 and 42g. Study design was double-blind, randomized, crossover and controlled. Hydroxytyrosol, tyrosol (Tyr), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) urinary excretion, ethanol plasma concentrations and drunkenness were evaluated along a 6-h period. Urinary excretion of OHTyr and Tyr increased with ethanol administered dose. A reduction in the ratio DOPAC/OHTyr from placebo to the highest dose was observed, compatible with a shift in the dopamine metabolism to preferently produce OHTyr instead of DOPAC. Also a dose-dependent increase in plasma ethanol concentrations and subjective effects was observed. This study demonstrates an endogenous production of OHTyr and Tyr in relation to ethanol administered dose in humans. Biological effects of both phenols from this source should be investigated in future studies.
ISSN:1043-6618
1096-1186
DOI:10.1016/j.phrs.2015.02.008