Traveling wave solutions in a half-space for boundary reactions

We prove the existence and uniqueness of a traveling front and of its speed for the homogeneous heat equation in the half-plane with a Neumann boundary reaction term of unbalanced bistable type or of combustion type. We also establish the monotonicity of the front and, in the bistable case, its beha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis & PDE 2015-01, Vol.8 (2), p.333-364
Hauptverfasser: Cabré Vilagut, Xavier, Consul Porras, M. Nieves, Mande Nieto, José Vicente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the existence and uniqueness of a traveling front and of its speed for the homogeneous heat equation in the half-plane with a Neumann boundary reaction term of unbalanced bistable type or of combustion type. We also establish the monotonicity of the front and, in the bistable case, its behavior at infinity. In contrast with the classical bistable interior reaction model, its behavior at the side of the invading state is of power type, while at the side of the invaded state its decay is exponential. These decay results rely on the construction of a family of explicit bistable traveling fronts. Our existence results are obtained via a variational method, while the uniqueness of the speed and of the front rely on a comparison principle and the sliding method. Peer Reviewed
ISSN:2157-5045
1948-206X
1948-206X
DOI:10.2140/apde.2015.8.333