MiR-204 silencing in intraepithelial to invasive cutaneous squamous cell carcinoma progression

Background: Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and frequently progresses from an actinic keratosis (AK), a sun-induced keratinocyte intraepithelial neoplasia (KIN). Epigenetic mechanisms involved in the phenomenon of progression from AK to cSCC remain to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer 2016-07
Hauptverfasser: Toll, Agustí, Salgado, Rocío, Espinet, Blanca, Díaz Lagares, Angel, Hernández Ruiz, Eugenia, Andrades, Evelyn, Sandoval, Juan, Esteller, Manel, Pujol, Ramon M, Hernández Muñoz, Inmaculada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and frequently progresses from an actinic keratosis (AK), a sun-induced keratinocyte intraepithelial neoplasia (KIN). Epigenetic mechanisms involved in the phenomenon of progression from AK to cSCC remain to be elicited. Methods: Expression of microRNAs in sun-exposed skin, AK and cSCC was analysed by Agilent microarrays. DNA methylation of miR-204 promoter was determined by bisulphite treatment and pyrosequencing. Identification of miR-204 targets and pathways was accomplished in HaCat cells. Immunofluorescence and immunohistochemistry were used to analyze STAT3 activation and PTPN11 expression in human biopsies. Results: cSCCs display a marked downregulation of miR-204 expression when compared to AK. DNA methylation of miR-204 promoter was identified as one of the repressive mechanisms that accounts for miR-204 silencing in cSCC. In HaCaT cells miR-204 inhibits STAT3 and favours the MAPK signaling pathway, likely acting through PTPN11, a nuclear tyrosine phosphatase that is a direct miR-204 target. In non-peritumoral AK lesions, activated STAT3, as detected by pY705-STAT3 immunofluorescence, is retained in the membrane and cytoplasm compartments, whereas AK lesions adjacent to cSCCs display activated STAT3 in the nuclei. Conclusions: Our data suggest that miR-204 may act as a 'rheostat' that controls the signalling towards the MAPK pathway or the STAT3 pathway in the progression from AK to cSCC.
ISSN:1476-4598
1476-4598