Effect of drill speed on the strain distribution during drilling of bovine and human bones
Drilling is an operation commonly required in orthopaedic surgery for insertion of screws and internal fixation of bone fractures. Induced damage is one of the undesired effects of drilling mainly due to the use of inadequate drilling parameters. During the recent years, scientists have been trying...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Drilling is an operation commonly required in orthopaedic surgery for insertion of screws and internal fixation of bone fractures. Induced damage is one of the undesired effects of drilling mainly due to the use of inadequate drilling parameters. During the recent years, scientists have been trying to describe the relationship between drilling parameters and bone injury. However, no studies have examined the level of strain generated in the bone during the drilling process. This paper focuses on the analysis of different drill speeds during drilling of fresh bovine femora and human cadaveric tibiae. The main contribution of this work is to determine how differences in applied drill speeds affect the strain of cortical tissue near the drilling site and the drill bit temperature. Strains were measured in ex-vivo material during the osteotomy preparation with three drill speeds (520, 900 and 1370 r.p.m.). Additionally, a thermographic camera was used to measure the drill bit temperature. As the drilling operations are blind in nature with unknown depth, the osteotomies were performed using a drill press machine without control of the feed rate or depth. Drill bit geometry was kept constant with 4 mm of diameter, point angle 120⁰ and helix angle 30⁰. The tests were conducted at room temperature without applying cooling at the drilling zone. Bone strains near to the drilling sites were recorded with high accuracy using linear strain gages mounted around the diaphyseal cortex. It was noted that the bone strain and drill bit temperature increased with an increasing drill speed. Human and bovine bone samples presented significantly different levels of strain and temperature. Both strain and temperature were higher when drilling bovine femora than when drilling human cadaveric tibiae. |
---|---|
ISSN: | 2456-219X |