Combustion synthesized copper-ion substituted FeAl2O4 (Cu0.1Fe0.9Al2O4): A superior catalyst for methanol steam reforming compared to its impregnated analogue
A series of copper ion substituted MAl2O4 (M = Mg, Mn, Fe and Zn) spinels is prepared by a single step solution combustion synthesis (SCS) and tested for methanol steam reforming (MSR). The copper ion substituted Cu0.1Fe0.9Al2O4 appears to be the most active, showing ∼98% methanol conversion at 300 ...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2016-02, Vol.304, p.319-331 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of copper ion substituted MAl2O4 (M = Mg, Mn, Fe and Zn) spinels is prepared by a single step solution combustion synthesis (SCS) and tested for methanol steam reforming (MSR). The copper ion substituted Cu0.1Fe0.9Al2O4 appears to be the most active, showing ∼98% methanol conversion at 300 °C with ∼5% CO selectivity at GHSV = 30,000 h−1 and H2O:CH3OH = 1.1. The analogous impregnated catalyst, CuO (10 at%)/FeAl2O4, is found to be much less active. These materials are characterized by XRD, H2-TPR, BET, HRTEM, XPS and XANES analyses. Spinel phase formation is highly facilitated upon Cu-ion substitution and Cu loading beyond 10 at% leads to the formation of CuO as an additional phase. The ionic substitution of copper in FeAl2O4 leads to the highly crystalline SCS catalyst containing Cu2+ ion sites that are shown to be more active than the dispersed CuO nano-crystallites on the FeAl2O4 impregnated catalyst, despite its lower surface area. The as prepared SCS catalyst contains also a portion of copper as Cu1+ that increases when subjected to reforming atmosphere. The MSR activity of the SCS catalyst decreases with time-on-stream due to the sintering of catalyst crystallites as established from XPS and HRTEM analyses.
•Copper ion substituted FeAl2O4 is prepared by a solution combustion synthesis.•The Cu0.1Fe0.9Al2O4 spinel shows interesting methanol steam reforming behavior.•Combustion synthesized catalyst is superior to the analogous impregnated catalyst.•Substitutional copper ion in the spinel is stable towards reforming atmosphere. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2015.11.066 |