A comparison of domain-based word polarity estimation using different word embeddings
Comunicació presentada a la Tenth International Conference on Language Resources and Evaluation (LREC 2016), celebrada els dies 23 a 28 de maig de 2016 a Portorož, Eslovènia. A key point in Sentiment Analysis is to determine the polarity of the sentiment implied by a certain word or expression. In b...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Comunicació presentada a la Tenth International Conference on Language Resources and Evaluation (LREC 2016), celebrada els dies 23 a 28 de maig de 2016 a Portorož, Eslovènia.
A key point in Sentiment Analysis is to determine the polarity of the sentiment implied by a certain word or expression. In basic
Sentiment Analysis systems this sentiment polarity of the words is accounted and weighted in different ways to provide a degree of
positivity/negativity. Currently words are also modelled as continuous dense vectors, known as word embeddings, which seem to encode
interesting semantic knowledge. With regard to Sentiment Analysis, word embeddings are used as features to more complex supervised
classification systems to obtain sentiment classifiers. In this paper we compare a set of existing sentiment lexicons and sentiment lexicon
generation techniques. We also show a simple but effective technique to calculate a word polarity value for each word in a domain using
existing continuous word embeddings generation methods. Further, we also show that word embeddings calculated on in-domain corpus
capture the polarity better than the ones calculated on general-domain corpus.
This work has been supported by Vicomtech-IK4 and partially funded by TUNER project (TIN2015-65308-C5-1-R). |
---|