Monoaural Audio Source Separation Using Deep Convolutional Neural Networks

In this paper we introduce a low-latency monaural source separation framework using a Convolutional Neural Network (CNN). We use a CNN to estimate time-frequency soft masks which are applied for source separation. We evaluate the performance of the neural network on a database comprising of musical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chandna, Pritish, Miron, Marius, Janer, Jordi, Gómez, Emilia
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce a low-latency monaural source separation framework using a Convolutional Neural Network (CNN). We use a CNN to estimate time-frequency soft masks which are applied for source separation. We evaluate the performance of the neural network on a database comprising of musical mixtures of three instruments: voice, drums, bass as well as other instruments which vary from song to song. The proposed architecture is compared to a Multilayer Perceptron (MLP), achieving on-par results and a significant improvement in processing time. The algorithm was submitted to source separation evaluation campaigns to test efficiency, and achieved competitive results.
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-53547-0_25