Targeting CAG repeat RNAs reduces Huntington's disease phenotype independently of huntingtin levels

Huntington's disease (HD) is a polyglutamine disorder caused by a CAG expansion in the Huntingtin (HTT) gene exon 1. This expansion encodes a mutant protein whose abnormal function is traditionally associated with HD pathogenesis; however, recent evidence has also linked HD pathogenesis to RNA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2016
Hauptverfasser: Rué, Laura, Bañez Coronel, Mónica, Creus-Muncunill, Jordi, Giralt, Albert, Alcalá-Vida, Rafael, Mentxaka, Gartze, Kagerbauer, Birgit, Zomeño-Abellán, M. Teresa, Aranda, Zeus, Venturi, Veronica, Pérez-Navarro, Esther, Estivill, Xavier, 1955, Martí, Eulàlia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Huntington's disease (HD) is a polyglutamine disorder caused by a CAG expansion in the Huntingtin (HTT) gene exon 1. This expansion encodes a mutant protein whose abnormal function is traditionally associated with HD pathogenesis; however, recent evidence has also linked HD pathogenesis to RNA stable hairpins formed by the mutant HTT expansion. Here, we have shown that a locked nucleic acid-modified antisense oligonucleotide complementary to the CAG repeat (LNA-CTG) preferentially binds to mutant HTT without affecting HTT mRNA or protein levels. LNA-CTGs produced rapid and sustained improvement of motor deficits in an R6/2 mouse HD model that was paralleled by persistent binding of LNA-CTG to the expanded HTT exon 1 transgene. Motor improvement was accompanied by a pronounced recovery in the levels of several striatal neuronal markers severely impaired in R6/2 mice. Furthermore, in R6/2 mice, LNA-CTG blocked several pathogenic mechanisms caused by expanded CAG RNA, including small RNA toxicity and decreased Rn45s expression levels. These results suggest that LNA-CTGs promote neuroprotection by blocking the detrimental activity of CAG repeats within HTT mRNA. The present data emphasize the relevance of expanded CAG RNA to HD pathogenesis, indicate that inhibition of HTT expression is not required to reverse motor deficits, and further suggest a therapeutic potential for LNA-CTG in polyglutamine disorders. This work was supported by the Spanish government through the Plan Nacional de I+D+I and cofunded by grants from the Instituto de Salud Carlos III (ISCIII) – Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER) (project PI11/02036, to EM, and PI13/01250, to EPN); the Spanish Ministerio de Economía y Competitividad (MINECO) (SAF2008-00357 and SAF2013-49108-R, to XE, and SAF2014-60551-R: iRPaD, to EM); and the Generalitat de Catalunya, Departament Economia i Coneixement, Secretaria Universitats i Recerca (AGAUR 2014 SGR-1138, to XE).
ISSN:0021-9738
DOI:10.1172/JCI83185