Tuning ubiquinone position in biomimetic monolayer membranes
. Artificial lipid bilayers have been extensively studied as models that mimic natural membranes (biomimetic membranes). Several attempts of biomimetic membranes inserting ubiquinone (UQ) have been performed to enlighten which the position of UQ in the lipid layer is, although obtaining contradictor...
Gespeichert in:
Veröffentlicht in: | The European physical journal. E, Soft matter and biological physics Soft matter and biological physics, 2017-06, Vol.40 (6), p.62-8, Article 62 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | .
Artificial lipid bilayers have been extensively studied as models that mimic natural membranes (biomimetic membranes). Several attempts of biomimetic membranes inserting ubiquinone (UQ) have been performed to enlighten which the position of UQ in the lipid layer is, although obtaining contradictory results. In this work, pure components (DPPC and UQ) and DPPC:UQ mixtures have been studied using surface pressure-area isotherms and Langmuir-Blodgett (LB) films of the same compounds have been transferred onto solid substrates being topographically characterized on mica using atomic force microscopy and electrochemically on indium tin oxide slides. DPPC:UQ mixtures present less solid-like physical state than pure DPPC indicating a higher-order degree for the latter. UQ influences considerably DPPC during the fluid state, but it is mainly expelled after the phase transition at
≈
26 mN·m^-1 for the 5:1 ratio and at
≈
21 mN·m^-1 for lower UQ content. The thermodynamic studies confirm the stability of the DPPC:UQ mixtures before that event, although presenting a non-ideal behaviour. The results indicate that UQ position can be tuned by means of the surface pressure applied to obtain LB films and the UQ initial content. The UQ positions in the biomimetic membrane are distinguished by their formal potential: UQ located in “diving” position with the UQ placed in the DPPC matrix in direct contact with the electrode surface ( -0.04±0.02 V), inserted between lipid chains without contact to the substrate ( 0.00±0.01 V) and parallel to the substrate, above the lipid chains ( 0.09±0.02 V).
Graphical abstract |
---|---|
ISSN: | 1292-8941 1292-895X |
DOI: | 10.1140/epje/i2017-11552-2 |