Modeling and Sliding Mode Control for Three-Phase Active Power Filters Using the Vector Operation Technique

Traditionally, the vector operation technique (VOT) has been used to control three-phase converters using one cycle control. In this paper, a three-phase active power filter large-signal model with a VOT in a new coordinate system is presented. By using the VOT, only two phase-legs are switching at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2018-09, Vol.65 (9), p.6828-6838
Hauptverfasser: Morales, Javier, de Vicuna, Luis Garcia, Guzman, Ramon, Castilla, Miguel, Miret, Jaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditionally, the vector operation technique (VOT) has been used to control three-phase converters using one cycle control. In this paper, a three-phase active power filter large-signal model with a VOT in a new coordinate system is presented. By using the VOT, only two phase-legs are switching at high frequency, thus reducing the switching losses. This paper not only covers the literature gap about the modeling of three-phase converters using the vector operation, but also presents a sliding mode control for this converter. The control scheme consists of a nonlinear matrix transformation in order to obtain the voltages and currents in a new two-dimensional frame, \gamma \theta-frame, a sliding mode controller designed in these coordinates, and a modulator to obtain the control signals in a natural frame. The sliding mode control is designed with the help of the presented large-signal model assuring sinusoidal grid currents in phase with the grid voltages. This controller provides a fast transient response against sudden load changes with a good current tracking capability and a reduction of the switching losses. A stability analysis is performed in order to validate the control parameters. Experimental results are provided using a fully digital control system in order to validate the performances of the proposed controller.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2018.2795528