Decomposing almost complete graphs by random trees

An old conjecture of Ringel states that every tree with m edges decomposes the complete graph K2m+1. The best known lower bound for the order of a complete graph which admits a decomposition by every given tree with m edges is O(m3). We show that asymptotically almost surely a random tree with m edg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series A 2018-02, Vol.154, p.406-421
1. Verfasser: Lladó, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An old conjecture of Ringel states that every tree with m edges decomposes the complete graph K2m+1. The best known lower bound for the order of a complete graph which admits a decomposition by every given tree with m edges is O(m3). We show that asymptotically almost surely a random tree with m edges and p=2m+1 a prime decomposes K2m+1(r) for every r≥2, the graph obtained from the complete graph K2m+1 by replacing each vertex by a coclique of order r. Based on this result we show, among other results, that a random tree with m+1 edges a.a.s. decomposes the compete graph K6m+5 minus one edge.
ISSN:0097-3165
1096-0899
DOI:10.1016/j.jcta.2017.09.008