Electromagnetic-based evaluation of different Halbach array topologies with gap consideration for the permanent magnet synchronous machines

This paper investigates the influence of various Halbach arrays permanent magnets (PMs) on the electromagnetic performance of a radial flux machine with outer rotor topology. The static analysis is performed using a 2-D finite-element analysis (FEA) of six different machines with different Halbach a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering 2018-09, Vol.100 (3), p.1847-1856
Hauptverfasser: Asef, Pedram, Perpina, Ramon Bargallo, Barzegaran, M. R., Agarwal, Tanushree
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the influence of various Halbach arrays permanent magnets (PMs) on the electromagnetic performance of a radial flux machine with outer rotor topology. The static analysis is performed using a 2-D finite-element analysis (FEA) of six different machines with different Halbach array-based orientations. The gap consideration between PM segments is considered for the first time. The aim of the study is to find the most suitable magnetization topology determination for the PMSMs which brings maximum airgap flux density, coenergy, output torque turning, back-EMF, output electromagnetic power, and minimum corresponding harmonics, cogging torque and the likelihoods of saturation. Additionally, a comparative study of a continuous distribution that commercially is called polar anisotropic will be entirely discussed. The proposed model is verified by FEA, together with its experimental investigation for the small wind power generation application in the urban area. In addition, commercial and environmental issues of the project have been highly considered to reduce CO 2 emissions as the part of green power generation mission.
ISSN:0948-7921
1432-0487
DOI:10.1007/s00202-017-0656-6