Biotrickling filter modeling for styrene abatement. Part 2: Simulating a two-phase partitioning bioreactor

A dynamic model describing styrene abatement was developed for a two-phase partitioning bioreactor operated as a biotrickling filter (TPPB-BTF). The model was built as a coupled set of two different systems of partial differential equations depending on whether an irrigation or a non-irrigation peri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2018-01, Vol.191, p.1075-1082
Hauptverfasser: San-Valero, Pau, Dorado, Antonio D., Quijano, Guillermo, Álvarez-Hornos, F. Javier, Gabaldón, Carmen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dynamic model describing styrene abatement was developed for a two-phase partitioning bioreactor operated as a biotrickling filter (TPPB-BTF). The model was built as a coupled set of two different systems of partial differential equations depending on whether an irrigation or a non-irrigation period was simulated. The maximum growth rate was previously calibrated from a conventional BTF treating styrene (Part 1). The model was extended to simulate the TPPB-BTF based on the hypothesis that the main change associated with the non-aqueous phase is the modification of the pollutant properties in the liquid phase. The three phases considered were gas, a water–silicone liquid mixture, and biofilm. The selected calibration parameters were related to the physical properties of styrene: Henry's law constant, diffusivity, and the gas–liquid mass transfer coefficient. A sensitivity analysis revealed that Henry's law constant was the most sensitive parameter. The model was successfully calibrated with a goodness of fit of 0.94. It satisfactorily simulated the performance of the TPPB-BTF at styrene loads ranging from 13 to 77 g C m−3 h−1 and empty bed residence times of 30–15 s with the mass transfer enhanced by a factor of 1.6. The model was validated with data obtained in a TPPB-BTF removing styrene continuously. The experimental outlet emissions associated to oscillating inlet concentrations were satisfactorily predicted by using the calibrated parameters. Model simulations demonstrated the potential improvement of the mass-transfer performance of a conventional BTF degrading styrene by adding silicone oil. •A dynamic model was applied to simulate two-phase biotrickling filters.•The model was calibrated with several inlet loadings conditions.•Validation was performed with the data from dynamic loading fluctuations.•Superior performance versus biotrickling filters relied on greater mass transfer.•Use of two-phase biotrickling was recommended for mass transfer limited systems.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2017.10.141