Accelerating Super-Resolution for 4K upscaling

This paper presents a fast Super-Resolution (SR) algorithm based on a selective patch processing. Motivated by the observation that some regions of images are smooth and unfocused and can be properly upscaled with fast interpolation methods, we locally estimate the probability of performing a degrad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Perez-Pellitero, Eduardo, Salvador, Jordi, Ruiz-Hidalgo, Javier, Rosenhahn, Bodo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a fast Super-Resolution (SR) algorithm based on a selective patch processing. Motivated by the observation that some regions of images are smooth and unfocused and can be properly upscaled with fast interpolation methods, we locally estimate the probability of performing a degradation-free upscaling. Our proposed framework explores the usage of supervised machine learning techniques and tackles the problem using binary boosted tree classifiers. The applied upscaler is chosen based on the obtained probabilities: (1) A fast upscaler (e.g. bicubic interpolation) for those regions which are smooth or (2) a linear regression SR algorithm for those which are ill-posed. The proposed strategy accelerates SR by only processing the regions which benefit from it, thus not compromising quality. Furthermore all the algorithms composing the pipeline are naturally parallelizable and further speed-ups could be obtained.
ISSN:2158-3994
2158-4001
DOI:10.1109/ICCE.2015.7066429