Hall-Petch strengthening of the constrained metallic binder in WC–Co cemented carbides: Experimental assessment by means of massive nanoindentation and statistical analysis
WC–Co cemented carbides are geometrically complex composites constituted for two interpenetrating networks of the constitutive ceramic and metal phases. Accordingly, assessment of microstructural effects on the local mechanical properties of each phase is a challenging task, especially for the metal...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2016-10, Vol.676, p.487-491 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | WC–Co cemented carbides are geometrically complex composites constituted for two interpenetrating networks of the constitutive ceramic and metal phases. Accordingly, assessment of microstructural effects on the local mechanical properties of each phase is a challenging task, especially for the metallic binder. In this work, it is attempted by combining massive nanoindentation, statistical analysis, and implementation of a thin film model for deconvolution of the intrinsic hardness and flow stress of the metallic phase. Plotting of yield stress values as a function of the binder mean free path results in a Hall-Petch strengthening relationship with a slope (ky) of 0.98MPam1/2. This value points out the effectiveness of WC–Co phase boundaries as strong obstacles to slip propagation; and thus, for toughening of the brittle phase (WC) by means of crack-bridging ductile (Co) reinforcement. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2016.09.020 |