Vibration based damage detection techniques for small to medium span bridges: a review and case study

Overtime, the structural condition of bridges tends to decline due to a number of degradation processes, such as; creep, corrosion and cyclic loading, among others. Considerable research has been conducted over the years to assess and monitor the rate of such degradation with the aim of reducing str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Moughty, John James, Casas Rius, Joan Ramon
Format: Text Resource
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Overtime, the structural condition of bridges tends to decline due to a number of degradation processes, such as; creep, corrosion and cyclic loading, among others. Considerable research has been conducted over the years to assess and monitor the rate of such degradation with the aim of reducing structural uncertainty. Traditionally, vibration-based damage detection techniques in bridges have focused on monitoring changes to modal parameters and subsequently comparing them to numerical models. These traditional techniques are generally time consuming and can often mistake changing environmental and operational conditions as structural damage. Recent research has seen the emergence of more advanced computational techniques that not only allow the assessment of noisier and more complex data, but also allow research to veer away from monitoring changes in modal parameters alone. This paper presents a review of the current state-of-the-art developments in vibration based damage detection in small to medium span bridges with particular focus on the utilization of advanced computational methods that avoid traditional damage detection pitfalls. A case study of the S101 Bridge is also presented to test the damage sensitivity a chosen methodology.