Coherent quantum phase slip in two-component bosonic atomtronic circuits
Coherent quantum phase slip consists in the coherent transfer of vortices in superfluids. We investigate this phenomenon in two miscible coherently coupled components of a spinor Bose gas confined in a toroidal trap. After imprinting different vortex states, i.e. states with quantized circulation, o...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2015-12, Vol.18 (1), p.15003 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coherent quantum phase slip consists in the coherent transfer of vortices in superfluids. We investigate this phenomenon in two miscible coherently coupled components of a spinor Bose gas confined in a toroidal trap. After imprinting different vortex states, i.e. states with quantized circulation, on each component, we demonstrate that during the whole dynamics the system remains in a linear superposition of two current states in spite of the nonlinearity, and can be mapped onto a linear Josephson problem. We propose this system as a good candidate for the realization of a Mooij-Harmans qubit and remark its feasibility for implementation in current experiments with 87Rb, since we have used values for the physical parameters currently available in laboratories. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/18/1/015003 |