The proportional partitional Shapley value
A new coalitional value is proposed under the hypothesis of isolated unions. The main difference between this value and the Aumann–Drèze value is that the allocations within each union are not given by the Shapley value of the restricted game but proportionally to the Shapley value of the original g...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2015-05, Vol.187, p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Discrete Applied Mathematics |
container_volume | 187 |
creator | Alonso-Meijide, José María Carreras, Francesc Costa, Julián García-Jurado, Ignacio |
description | A new coalitional value is proposed under the hypothesis of isolated unions. The main difference between this value and the Aumann–Drèze value is that the allocations within each union are not given by the Shapley value of the restricted game but proportionally to the Shapley value of the original game. Axiomatic characterizations of the new value, examples illustrating its application and a comparative discussion are provided. |
doi_str_mv | 10.1016/j.dam.2015.01.031 |
format | Article |
fullrecord | <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_250193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X15000451</els_id><sourcerecordid>oai_recercat_cat_2072_250193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4eef989e141ad444a456ca7c19bb9b387f5e47474eb4c3a9e4c7d210f3a0ac1c3</originalsourceid><addsrcrecordid>eNp9kE1rwzAMhs3YYF23H7Bbz4Nkku3ECTuNsi8o7LAOdjOKo1CXtAlOWti_n0sL22kIoVegV0KPELcIKQLm9-u0pk0qAbMUMAWFZ2KChZFJbgyei0mcyROJxdeluBqGNQBg7CbibrniWR-6vguj77bUznqK6qQ_VtS3_D3bU7vja3HRUDvwzalOxefz03L-mizeX97mj4vEqUKOiWZuyqJk1Ei11pp0ljsyDsuqKitVmCZjbWJwpZ2ikrUztURoFAE5dGoq8LjXDTtnAzsOjkbbkf9tDinBSCszwFL98YRuGAI3tg9-Q-HbItgDILu2EZA9ALKANgKKnoejh-Mze8_BDs7z1nHt453R1p3_x_0D7sRt0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The proportional partitional Shapley value</title><source>Elsevier ScienceDirect Journals Complete</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alonso-Meijide, José María ; Carreras, Francesc ; Costa, Julián ; García-Jurado, Ignacio</creator><creatorcontrib>Alonso-Meijide, José María ; Carreras, Francesc ; Costa, Julián ; García-Jurado, Ignacio</creatorcontrib><description>A new coalitional value is proposed under the hypothesis of isolated unions. The main difference between this value and the Aumann–Drèze value is that the allocations within each union are not given by the Shapley value of the restricted game but proportionally to the Shapley value of the original game. Axiomatic characterizations of the new value, examples illustrating its application and a comparative discussion are provided.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2015.01.031</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>(TU) cooperative game ; 91 Game theory, economics, social and behavioral sciences ; 91A Game theory ; Aumann–Drèze value ; Classificació AMS ; Coalition structure ; Cooperative games (Mathematics) ; Game theory ; Investigació operativa ; Jocs cooperatius (Matemàtica) ; Jocs, Teoria de ; Matemàtiques i estadística ; Shapley value ; Teoria de jocs ; Àrees temàtiques de la UPC</subject><ispartof>Discrete Applied Mathematics, 2015-05, Vol.187, p.1-11</ispartof><rights>2015 Elsevier B.V.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4eef989e141ad444a456ca7c19bb9b387f5e47474eb4c3a9e4c7d210f3a0ac1c3</citedby><cites>FETCH-LOGICAL-c382t-4eef989e141ad444a456ca7c19bb9b387f5e47474eb4c3a9e4c7d210f3a0ac1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2015.01.031$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,26974,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Alonso-Meijide, José María</creatorcontrib><creatorcontrib>Carreras, Francesc</creatorcontrib><creatorcontrib>Costa, Julián</creatorcontrib><creatorcontrib>García-Jurado, Ignacio</creatorcontrib><title>The proportional partitional Shapley value</title><title>Discrete Applied Mathematics</title><description>A new coalitional value is proposed under the hypothesis of isolated unions. The main difference between this value and the Aumann–Drèze value is that the allocations within each union are not given by the Shapley value of the restricted game but proportionally to the Shapley value of the original game. Axiomatic characterizations of the new value, examples illustrating its application and a comparative discussion are provided.</description><subject>(TU) cooperative game</subject><subject>91 Game theory, economics, social and behavioral sciences</subject><subject>91A Game theory</subject><subject>Aumann–Drèze value</subject><subject>Classificació AMS</subject><subject>Coalition structure</subject><subject>Cooperative games (Mathematics)</subject><subject>Game theory</subject><subject>Investigació operativa</subject><subject>Jocs cooperatius (Matemàtica)</subject><subject>Jocs, Teoria de</subject><subject>Matemàtiques i estadística</subject><subject>Shapley value</subject><subject>Teoria de jocs</subject><subject>Àrees temàtiques de la UPC</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kE1rwzAMhs3YYF23H7Bbz4Nkku3ECTuNsi8o7LAOdjOKo1CXtAlOWti_n0sL22kIoVegV0KPELcIKQLm9-u0pk0qAbMUMAWFZ2KChZFJbgyei0mcyROJxdeluBqGNQBg7CbibrniWR-6vguj77bUznqK6qQ_VtS3_D3bU7vja3HRUDvwzalOxefz03L-mizeX97mj4vEqUKOiWZuyqJk1Ei11pp0ljsyDsuqKitVmCZjbWJwpZ2ikrUztURoFAE5dGoq8LjXDTtnAzsOjkbbkf9tDinBSCszwFL98YRuGAI3tg9-Q-HbItgDILu2EZA9ALKANgKKnoejh-Mze8_BDs7z1nHt453R1p3_x_0D7sRt0w</recordid><startdate>20150531</startdate><enddate>20150531</enddate><creator>Alonso-Meijide, José María</creator><creator>Carreras, Francesc</creator><creator>Costa, Julián</creator><creator>García-Jurado, Ignacio</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20150531</creationdate><title>The proportional partitional Shapley value</title><author>Alonso-Meijide, José María ; Carreras, Francesc ; Costa, Julián ; García-Jurado, Ignacio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4eef989e141ad444a456ca7c19bb9b387f5e47474eb4c3a9e4c7d210f3a0ac1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>(TU) cooperative game</topic><topic>91 Game theory, economics, social and behavioral sciences</topic><topic>91A Game theory</topic><topic>Aumann–Drèze value</topic><topic>Classificació AMS</topic><topic>Coalition structure</topic><topic>Cooperative games (Mathematics)</topic><topic>Game theory</topic><topic>Investigació operativa</topic><topic>Jocs cooperatius (Matemàtica)</topic><topic>Jocs, Teoria de</topic><topic>Matemàtiques i estadística</topic><topic>Shapley value</topic><topic>Teoria de jocs</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Meijide, José María</creatorcontrib><creatorcontrib>Carreras, Francesc</creatorcontrib><creatorcontrib>Costa, Julián</creatorcontrib><creatorcontrib>García-Jurado, Ignacio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Meijide, José María</au><au>Carreras, Francesc</au><au>Costa, Julián</au><au>García-Jurado, Ignacio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The proportional partitional Shapley value</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2015-05-31</date><risdate>2015</risdate><volume>187</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A new coalitional value is proposed under the hypothesis of isolated unions. The main difference between this value and the Aumann–Drèze value is that the allocations within each union are not given by the Shapley value of the restricted game but proportionally to the Shapley value of the original game. Axiomatic characterizations of the new value, examples illustrating its application and a comparative discussion are provided.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2015.01.031</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2015-05, Vol.187, p.1-11 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_csuc_recercat_oai_recercat_cat_2072_250193 |
source | Elsevier ScienceDirect Journals Complete; Recercat; EZB-FREE-00999 freely available EZB journals |
subjects | (TU) cooperative game 91 Game theory, economics, social and behavioral sciences 91A Game theory Aumann–Drèze value Classificació AMS Coalition structure Cooperative games (Mathematics) Game theory Investigació operativa Jocs cooperatius (Matemàtica) Jocs, Teoria de Matemàtiques i estadística Shapley value Teoria de jocs Àrees temàtiques de la UPC |
title | The proportional partitional Shapley value |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20proportional%20partitional%20Shapley%20value&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Alonso-Meijide,%20Jos%C3%A9%20Mar%C3%ADa&rft.date=2015-05-31&rft.volume=187&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2015.01.031&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_250193%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166218X15000451&rfr_iscdi=true |