The proportional partitional Shapley value

A new coalitional value is proposed under the hypothesis of isolated unions. The main difference between this value and the Aumann–Drèze value is that the allocations within each union are not given by the Shapley value of the restricted game but proportionally to the Shapley value of the original g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2015-05, Vol.187, p.1-11
Hauptverfasser: Alonso-Meijide, José María, Carreras, Francesc, Costa, Julián, García-Jurado, Ignacio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Discrete Applied Mathematics
container_volume 187
creator Alonso-Meijide, José María
Carreras, Francesc
Costa, Julián
García-Jurado, Ignacio
description A new coalitional value is proposed under the hypothesis of isolated unions. The main difference between this value and the Aumann–Drèze value is that the allocations within each union are not given by the Shapley value of the restricted game but proportionally to the Shapley value of the original game. Axiomatic characterizations of the new value, examples illustrating its application and a comparative discussion are provided.
doi_str_mv 10.1016/j.dam.2015.01.031
format Article
fullrecord <record><control><sourceid>csuc_cross</sourceid><recordid>TN_cdi_csuc_recercat_oai_recercat_cat_2072_250193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X15000451</els_id><sourcerecordid>oai_recercat_cat_2072_250193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4eef989e141ad444a456ca7c19bb9b387f5e47474eb4c3a9e4c7d210f3a0ac1c3</originalsourceid><addsrcrecordid>eNp9kE1rwzAMhs3YYF23H7Bbz4Nkku3ECTuNsi8o7LAOdjOKo1CXtAlOWti_n0sL22kIoVegV0KPELcIKQLm9-u0pk0qAbMUMAWFZ2KChZFJbgyei0mcyROJxdeluBqGNQBg7CbibrniWR-6vguj77bUznqK6qQ_VtS3_D3bU7vja3HRUDvwzalOxefz03L-mizeX97mj4vEqUKOiWZuyqJk1Ei11pp0ljsyDsuqKitVmCZjbWJwpZ2ikrUztURoFAE5dGoq8LjXDTtnAzsOjkbbkf9tDinBSCszwFL98YRuGAI3tg9-Q-HbItgDILu2EZA9ALKANgKKnoejh-Mze8_BDs7z1nHt453R1p3_x_0D7sRt0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The proportional partitional Shapley value</title><source>Elsevier ScienceDirect Journals Complete</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Alonso-Meijide, José María ; Carreras, Francesc ; Costa, Julián ; García-Jurado, Ignacio</creator><creatorcontrib>Alonso-Meijide, José María ; Carreras, Francesc ; Costa, Julián ; García-Jurado, Ignacio</creatorcontrib><description>A new coalitional value is proposed under the hypothesis of isolated unions. The main difference between this value and the Aumann–Drèze value is that the allocations within each union are not given by the Shapley value of the restricted game but proportionally to the Shapley value of the original game. Axiomatic characterizations of the new value, examples illustrating its application and a comparative discussion are provided.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2015.01.031</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>(TU) cooperative game ; 91 Game theory, economics, social and behavioral sciences ; 91A Game theory ; Aumann–Drèze value ; Classificació AMS ; Coalition structure ; Cooperative games (Mathematics) ; Game theory ; Investigació operativa ; Jocs cooperatius (Matemàtica) ; Jocs, Teoria de ; Matemàtiques i estadística ; Shapley value ; Teoria de jocs ; Àrees temàtiques de la UPC</subject><ispartof>Discrete Applied Mathematics, 2015-05, Vol.187, p.1-11</ispartof><rights>2015 Elsevier B.V.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4eef989e141ad444a456ca7c19bb9b387f5e47474eb4c3a9e4c7d210f3a0ac1c3</citedby><cites>FETCH-LOGICAL-c382t-4eef989e141ad444a456ca7c19bb9b387f5e47474eb4c3a9e4c7d210f3a0ac1c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2015.01.031$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,26974,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Alonso-Meijide, José María</creatorcontrib><creatorcontrib>Carreras, Francesc</creatorcontrib><creatorcontrib>Costa, Julián</creatorcontrib><creatorcontrib>García-Jurado, Ignacio</creatorcontrib><title>The proportional partitional Shapley value</title><title>Discrete Applied Mathematics</title><description>A new coalitional value is proposed under the hypothesis of isolated unions. The main difference between this value and the Aumann–Drèze value is that the allocations within each union are not given by the Shapley value of the restricted game but proportionally to the Shapley value of the original game. Axiomatic characterizations of the new value, examples illustrating its application and a comparative discussion are provided.</description><subject>(TU) cooperative game</subject><subject>91 Game theory, economics, social and behavioral sciences</subject><subject>91A Game theory</subject><subject>Aumann–Drèze value</subject><subject>Classificació AMS</subject><subject>Coalition structure</subject><subject>Cooperative games (Mathematics)</subject><subject>Game theory</subject><subject>Investigació operativa</subject><subject>Jocs cooperatius (Matemàtica)</subject><subject>Jocs, Teoria de</subject><subject>Matemàtiques i estadística</subject><subject>Shapley value</subject><subject>Teoria de jocs</subject><subject>Àrees temàtiques de la UPC</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>XX2</sourceid><recordid>eNp9kE1rwzAMhs3YYF23H7Bbz4Nkku3ECTuNsi8o7LAOdjOKo1CXtAlOWti_n0sL22kIoVegV0KPELcIKQLm9-u0pk0qAbMUMAWFZ2KChZFJbgyei0mcyROJxdeluBqGNQBg7CbibrniWR-6vguj77bUznqK6qQ_VtS3_D3bU7vja3HRUDvwzalOxefz03L-mizeX97mj4vEqUKOiWZuyqJk1Ei11pp0ljsyDsuqKitVmCZjbWJwpZ2ikrUztURoFAE5dGoq8LjXDTtnAzsOjkbbkf9tDinBSCszwFL98YRuGAI3tg9-Q-HbItgDILu2EZA9ALKANgKKnoejh-Mze8_BDs7z1nHt453R1p3_x_0D7sRt0w</recordid><startdate>20150531</startdate><enddate>20150531</enddate><creator>Alonso-Meijide, José María</creator><creator>Carreras, Francesc</creator><creator>Costa, Julián</creator><creator>García-Jurado, Ignacio</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>XX2</scope></search><sort><creationdate>20150531</creationdate><title>The proportional partitional Shapley value</title><author>Alonso-Meijide, José María ; Carreras, Francesc ; Costa, Julián ; García-Jurado, Ignacio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4eef989e141ad444a456ca7c19bb9b387f5e47474eb4c3a9e4c7d210f3a0ac1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>(TU) cooperative game</topic><topic>91 Game theory, economics, social and behavioral sciences</topic><topic>91A Game theory</topic><topic>Aumann–Drèze value</topic><topic>Classificació AMS</topic><topic>Coalition structure</topic><topic>Cooperative games (Mathematics)</topic><topic>Game theory</topic><topic>Investigació operativa</topic><topic>Jocs cooperatius (Matemàtica)</topic><topic>Jocs, Teoria de</topic><topic>Matemàtiques i estadística</topic><topic>Shapley value</topic><topic>Teoria de jocs</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alonso-Meijide, José María</creatorcontrib><creatorcontrib>Carreras, Francesc</creatorcontrib><creatorcontrib>Costa, Julián</creatorcontrib><creatorcontrib>García-Jurado, Ignacio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Recercat</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alonso-Meijide, José María</au><au>Carreras, Francesc</au><au>Costa, Julián</au><au>García-Jurado, Ignacio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The proportional partitional Shapley value</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2015-05-31</date><risdate>2015</risdate><volume>187</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A new coalitional value is proposed under the hypothesis of isolated unions. The main difference between this value and the Aumann–Drèze value is that the allocations within each union are not given by the Shapley value of the restricted game but proportionally to the Shapley value of the original game. Axiomatic characterizations of the new value, examples illustrating its application and a comparative discussion are provided.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2015.01.031</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2015-05, Vol.187, p.1-11
issn 0166-218X
1872-6771
language eng
recordid cdi_csuc_recercat_oai_recercat_cat_2072_250193
source Elsevier ScienceDirect Journals Complete; Recercat; EZB-FREE-00999 freely available EZB journals
subjects (TU) cooperative game
91 Game theory, economics, social and behavioral sciences
91A Game theory
Aumann–Drèze value
Classificació AMS
Coalition structure
Cooperative games (Mathematics)
Game theory
Investigació operativa
Jocs cooperatius (Matemàtica)
Jocs, Teoria de
Matemàtiques i estadística
Shapley value
Teoria de jocs
Àrees temàtiques de la UPC
title The proportional partitional Shapley value
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20proportional%20partitional%20Shapley%20value&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Alonso-Meijide,%20Jos%C3%A9%20Mar%C3%ADa&rft.date=2015-05-31&rft.volume=187&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2015.01.031&rft_dat=%3Ccsuc_cross%3Eoai_recercat_cat_2072_250193%3C/csuc_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166218X15000451&rfr_iscdi=true