The dual polarization GNSS-R interference pattern technique
Since 2003 several field experiments using Global Navigation Satellite Systems (GNSS)-Reflectometry (GNSS-R) have demonstrated the feasibility of retrieving Soil Moisture (SM) from GNSS-R observations. Different techniques such as the power difference between direct and reflected signals, the Signal...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since 2003 several field experiments using Global Navigation Satellite Systems (GNSS)-Reflectometry (GNSS-R) have demonstrated the feasibility of retrieving Soil Moisture (SM) from GNSS-R observations. Different techniques such as the power difference between direct and reflected signals, the Signal to Noise Ratio (SNR)-analysis method, the Interference Pattern Technique (IPT) or the Interferometric Complex Field (ICF) have been used. The conventional IPT was first proposed in 2008, and consisted on forcing a single multi-path using a vertically polarized GNSS antenna with a rotationally symmetric pattern pointing to the horizon. In this work the conventional IPT is extended to dual-polarization, horizontal (H-pol) and vertical (V-pol), in attempt to increase the accuracy in the SM retrievals. In this case, the Brewster angle is estimated from the phase difference between the Hand V-Pol interference patterns. The use of dual-polarization measurements is not sensitive to surface roughness and it is more precise in the determination of the Brewster angle position. Results from a field experiment at the Yanco site, New South Wales, Australia, are shown to demonstrate the concepts proposed in this work. |
---|---|
ISSN: | 2153-6996 2153-7003 |
DOI: | 10.1109/IGARSS.2014.6947377 |