Layer solutions for the fractional Laplacian on hyperbolic space: existence, uniqueness and qualitative properties

We investigate the equation ( - Δ H n ) γ w = f ( w ) in H n , where ( - Δ H n ) γ corresponds to the fractional Laplacian on hyperbolic space for γ ∈ ( 0 , 1 ) and f is a smooth nonlinearity that typically comes from a double well potential. We prove the existence of heteroclinic connections in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annali di matematica pura ed applicata 2014-12, Vol.193 (6), p.1823-1850
Hauptverfasser: González, María del Mar, Sáez, Mariel, Sire, Yannick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the equation ( - Δ H n ) γ w = f ( w ) in H n , where ( - Δ H n ) γ corresponds to the fractional Laplacian on hyperbolic space for γ ∈ ( 0 , 1 ) and f is a smooth nonlinearity that typically comes from a double well potential. We prove the existence of heteroclinic connections in the following sense; a so-called layer solution is a smooth solution of the previous equation converging to ± 1 at any point of the two hemispheres S ± ⊂ ∂ ∞ H n and which is strictly increasing with respect to the signed distance to a totally geodesic hyperplane Π . We prove that under additional conditions on the nonlinearity uniqueness holds up to isometry. Then we provide several symmetry results and qualitative properties of the layer solutions. Finally, we consider the multilayer case, at least when γ is close to one.
ISSN:0373-3114
1618-1891
DOI:10.1007/s10231-013-0358-2