Study on analytical modelling approaches to the performance of thin film PV modules in sunny inland climates

This work is aimed at verifying that analytical modelling approaches may provide an estimation of the outdoor performance of TF (thin film) PV (photovoltaic) technologies in inland sites with sunny climates with adequate accuracy for engineering purposes. Osterwald's and constant fill factor me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2014-08, Vol.73, p.731-740
Hauptverfasser: Torres-Ramírez, M., Nofuentes, G., Silva, J.P., Silvestre, S., Muñoz, J.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is aimed at verifying that analytical modelling approaches may provide an estimation of the outdoor performance of TF (thin film) PV (photovoltaic) technologies in inland sites with sunny climates with adequate accuracy for engineering purposes. Osterwald's and constant fill factor methods were tried to model the maximum power delivered and the annual energy produced by PV modules corresponding to four TF PV technologies. Only calibrated electrical parameters at STC (standard test conditions), on-plane global irradiance and module temperature are required as inputs. A 12-month experimental campaign carried out in Madrid and Jaén (Spain) provided the necessary data. Modelled maximum power and annual energy values obtained through both methods were statistically compared to the experimental ones. In power terms, the RMSE (root mean square error) stays below 3.8% and 4.5% for CdTe (cadmium telluride) and CIGS (copper indium gallium selenide sulfide) PV modules, respectively, while RMSE exceeds 5.4% for a-Si (amorphous silicon) or a-Si:H/μc-Si PV modules. Regarding energy terms, errors lie below 4.0% in all cases. Thus, the methods tried may be used to model the outdoor behaviour of the a-Si, a-Si:H/μc-Si, CIGS and CdTe PV modules tested – ordered from the lowest to the highest accuracy obtained – in sites with similar spectral characteristics to those of the two sites considered. •Simple analytical methods to model the outdoor behaviour of thin film PV (photovoltaic) technologies.•8 PV modules were deployed outdoors over a 12-month period in two sunny inland sites.•RMSE (root mean square error) values stay below 3.8% and 4.5% in CdTe (cadmium telluride) and CIGS (copper indium gallium selenide sulfide) PV modules.•Errors remain below 4.0% for all the PV modules and sites in energy terms.•Simple methods: suitable estimation of PV outdoor behaviour for engineering purposes.
ISSN:0360-5442
DOI:10.1016/j.energy.2014.06.077