Assessment and application of Human Reliability Aanalysis to an Independent Spent Fuel Storage Installation Probabilistic Safety Assessment

This Master Thesis is framed within a collaboration agreement between the Nuclear Engineering Research Group (NERG) of Universitat Politècnica de Catalunya (UPC) and a Spanish Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP). The main objective of the collaboration is to study and apply the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Díaz Bayona, Pedro
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This Master Thesis is framed within a collaboration agreement between the Nuclear Engineering Research Group (NERG) of Universitat Politècnica de Catalunya (UPC) and a Spanish Pressurized Water Reactor (PWR) Nuclear Power Plant (NPP). The main objective of the collaboration is to study and apply the Probabilistic Safety Assessment (PSA) methodology to risk-informed decision making. This study is part of the NPP Independent Spent Fuel Storage Installation (ISFSI) PSA requested by the Spanish NPP. It is the continuation of the final degree Project “Estudio piloto para el análisis del riesgo asociado a un Almacén Temporal Individualizado. Aplicación de la metodología APS” [1], which developed a pilot ISFSI’s PSA model without Human Reliability Analysis (HRA). The objective of this thesis is to apply a HRA to the Spanish NPP Independent Spent Fuel Storage Installation and then implement the HRA results into the ISFSI’s PSA model in order to evaluate the impact of human performance on the ISFSI’s Risk. In consequence, the project is divided in two different parts, the HRA development and the HRA implementation into the PSA model. The first part is more research related. On the other hand, the second part is more engineering related. The ISFSI’s HRA application is based on the methodology described in the regulatory guide NUREG-1880, “ATHEANA User’s Guide Final Report”, as recommended by several Nuclear Regulatory Commission (NRC) publications [2][3]. This methodology requires the participation of ISFSI’s Subject-Matter Experts (SMEs). SMEs are not available since the Spanish NPP has little experience in ISFSI operations. Therefore, it has been decided to develop an HRA methodology which does not need SMEs to be carried out. To do so, the contribution of the SME’s has been replaced with the use of other HRA methodologies, namely THERP and SPAR-H. In consequence, an experimental hybrid ATHEANA-based HRA methodology has been used to perform the analysis. The HRA results should be considered illustrative rather than definitive since several assumptions have been taken to apply the methodology and describe human actions. Furthermore, the HRA results cannot be compared with Nuclear Industry data since no ATHEANA-based ISFSI HRA has been published yet. The most important operations from a Risk point of view [1] are the human actions performed inside the Spent Fuel Storage Building (SFSB). Therefore, the HRA has been limited to the analysis of these human actions. Some