Edge-distance-regular graphs are distance-regular
A graph is edge-distance-regular when it is distance-regular around each of its edges and it has the same intersection numbers for any edge taken as a root. In this paper we give some (combinatorial and algebraic) proofs of the fact that every edge-distance-regular graph Γ is distance-regular and ho...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series A 2013-07, Vol.120 (5), p.1057-1067 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph is edge-distance-regular when it is distance-regular around each of its edges and it has the same intersection numbers for any edge taken as a root. In this paper we give some (combinatorial and algebraic) proofs of the fact that every edge-distance-regular graph Γ is distance-regular and homogeneous. More precisely, Γ is edge-distance-regular if and only if it is bipartite distance-regular or a generalized odd graph. Also, we obtain the relationships between some of their corresponding parameters, mainly, the distance polynomials and the intersection numbers. |
---|---|
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1016/j.jcta.2013.02.006 |