Blind restoration of retinal images degraded by space-variant blur with adaptive blur estimation
Retinal images are often degraded with a blur that varies across the field view. Because traditional deblurring algorithms assume the blur to be space-invariant they typically fail in the presence of space-variant blur. In this work we consider the blur to be both unknown and space-variant. To carry...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Retinal images are often degraded with a blur that varies across the field view. Because traditional deblurring algorithms assume the blur to be space-invariant they typically fail in the presence of space-variant blur. In this work we consider the blur to be both unknown and space-variant. To carry out the restoration, we assume that in small regions the space-variant blur can be approximated by a space-invariant point-spread function (PSF). However, instead of deblurring the image on a per-patch basis, we extend individual PSFs by linear interpolation and perform a global restoration. Because the blind estimation of local PSFs may fail we propose a strategy for the identification of valid local PSFs and perform interpolation to obtain the space-variant PSF. The method was tested on artificial and real degraded retinal images. Results show significant improvement in the visibility of subtle details like small blood vessels. |
---|---|
ISSN: | 0277-786X |
DOI: | 10.1117/12.2025134 |