Parsimonious Selection of Useful Genes in Microarray Gene Expression Data
Machine learning methods have of late made significant efforts to solving multidisciplinary problems in the field of cancer classification in microarray gene expression data. These tasks are characterized by a large number of features and a few observations, making the modeling a nontrivial undertak...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Machine learning methods have of late made significant efforts to solving multidisciplinary problems in the field of cancer classification in microarray gene expression data. These tasks are characterized by a large number of features and a few observations, making the modeling a nontrivial undertaking. In this study, we apply entropic filter methods for gene selection, in combination with several off-the-shelf classifiers. The introduction of bootstrap resampling techniques permits the achievement of more stable performance estimates. Our findings show that the proposed methodology permits a drastic reduction in dimension, offering attractive solutions in terms of both prediction accuracy and number of explanatory genes; a dimensionality reduction technique preserving discrimination capabilities is used for visualization of the selected genes. |
---|---|
ISSN: | 0065-2598 |
DOI: | 10.1007/978-1-4419-7046-6_5 |