Learning probabilistic automata: A study in state distinguishability

Known algorithms for learning PDFA can only be shown to run in time polynomial in the so-called distinguishability μ of the target machine, besides the number of states and the usual accuracy and confidence parameters. We show that the dependence on μ is necessary in the worst case for every algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2013-02, Vol.473, p.46-60
Hauptverfasser: Balle, Borja, Castro, Jorge, Gavaldà, Ricard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Known algorithms for learning PDFA can only be shown to run in time polynomial in the so-called distinguishability μ of the target machine, besides the number of states and the usual accuracy and confidence parameters. We show that the dependence on μ is necessary in the worst case for every algorithm whose structure resembles existing ones. As a technical tool, a new variant of Statistical Queries termed L∞-queries is defined. We show how to simulate L∞-queries using classical Statistical Queries and show that known PAC algorithms for learning PDFA are in fact statistical query algorithms. Our results include a lower bound: every algorithm to learn PDFA with queries using a reasonable tolerance must make Ω(1/μ1−c) queries for every c>0. Finally, an adaptive algorithm that PAC-learns w.r.t. another measure of complexity is described. This yields better efficiency in many cases, while retaining the same inevitable worst-case behavior. Our algorithm requires fewer input parameters than previously existing ones, and has a better sample bound.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2012.10.009