Robust identification and fault diagnosis based on uncertain multiple input–multiple output linear parameter varying parity equations and zonotopes

We present a robust fault diagnosis method for uncertain multiple input–multiple output (MIMO) linear parameter varying (LPV) parity equations. The fault detection methodology is based on checking whether measurements are inside the prediction bounds provided by the uncertain MIMO LPV parity equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of process control 2012-12, Vol.22 (10), p.1890-1912
Hauptverfasser: Blesa, Joaquim, Puig, Vicenç, Saludes, Jordi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a robust fault diagnosis method for uncertain multiple input–multiple output (MIMO) linear parameter varying (LPV) parity equations. The fault detection methodology is based on checking whether measurements are inside the prediction bounds provided by the uncertain MIMO LPV parity equations. The proposed approach takes into account existing couplings between the different measured outputs. Modelling and prediction uncertainty bounds are computed using zonotopes. Also proposed is an identification algorithm that estimates model parameters and their uncertainty such that all measured data free of faults will be inside the predicted bounds. The fault isolation and estimation algorithm is based on the use of residual fault sensitivity. Finally, two case studies (one based on a water distribution network and the other on a four-tank system) illustrate the effectiveness of the proposed approach.
ISSN:0959-1524
1873-2771
DOI:10.1016/j.jprocont.2012.09.007