Multi-view Body Tracking with a Detector-Driven Hierarchical Particle Filter
In this paper we present a novel approach to markerless human motion capture that robustly integrates body part detections in multiple views. The proposed method fuses cues from multiple views to enhance the propagation and observation model of particle filtering methods aiming at human motion captu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present a novel approach to markerless human motion capture that robustly integrates body part detections in multiple views. The proposed method fuses cues from multiple views to enhance the propagation and observation model of particle filtering methods aiming at human motion capture. We particularize our method to improve arm tracking in the publicly available IXMAS dataset. Our experiments show that the proposed method outperforms other state-of-the-art approaches. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-642-31567-1_8 |