Abundance of attracting, repelling and elliptic periodic orbits in two-dimensional reversible maps
We study the dynamics and bifurcations of two-dimensional reversible maps with non-transversal heteroclinic cycles containing symmetric saddle fixed points. We consider one-parameter families of reversible maps unfolding the initial heteroclinic tangency and prove the existence of infinitely many se...
Gespeichert in:
Veröffentlicht in: | Nonlinearity 2013-01, Vol.26 (1), p.1-33 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the dynamics and bifurcations of two-dimensional reversible maps with non-transversal heteroclinic cycles containing symmetric saddle fixed points. We consider one-parameter families of reversible maps unfolding the initial heteroclinic tangency and prove the existence of infinitely many sequences (cascades) of bifurcations and the birth of asymptotically stable, unstable and elliptic periodic orbits. |
---|---|
ISSN: | 0951-7715 1361-6544 |
DOI: | 10.1088/0951-7715/26/1/1 |