Connected operators on 3D data for human body analysis
This paper presents a novel method for filtering and extraction of human body features from 3D data, either from multi-view images or range sensors. The proposed algorithm consists in processing the geodesic distances on a 3D surface representing the human body in order to find prominent maxima repr...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel method for filtering and extraction of human body features from 3D data, either from multi-view images or range sensors. The proposed algorithm consists in processing the geodesic distances on a 3D surface representing the human body in order to find prominent maxima representing salient points of the human body. We introduce a 3D surface graph representation and filtering strategies to enhance robustness to noise and artifacts present in this kind of data. We conduct several experiments on different datasets involving 2 multi-view setups and 2 range data sensors: Kinect and Mesa SR4000. In all of them, the proposed algorithm shows a promising performance towards human body analysis with 3D data. |
---|---|
ISSN: | 2160-7508 2160-7516 |
DOI: | 10.1109/CVPRW.2011.5981772 |