A fully coupled elastic-plastic hydromechanical model for compacted soils accounting for clay activity
SUMMARY A constitutive model, accounting for multiphase and multiscale coupling, is proposed for the water retention domain and the stress–strain response of compacted clayey soils. The model is based on a conceptual interpretation of the microfabric evolution of compacted soils along generalised hy...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2013-04, Vol.37 (5), p.503-535 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | SUMMARY
A constitutive model, accounting for multiphase and multiscale coupling, is proposed for the water retention domain and the stress–strain response of compacted clayey soils. The model is based on a conceptual interpretation of the microfabric evolution of compacted soils along generalised hydromechanical paths, detected by means of mercury intrusion porosimeter tests. Multiphase coupling is provided by the mutual interaction between the mechanical and the hydraulic states. Multiscale coupling is introduced by a measure of the size of the aggregates, which influences both the retention and the stress–strain response, in the phenomenological constitutive equations. Model capabilities are verified by comparison with relevant experimental data from laboratory tests on compacted Boom clay and other selected experimental data on different compacted clayey soils. Copyright © 2012 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0363-9061 1096-9853 |
DOI: | 10.1002/nag.1116 |