Frobenius and Cartier algebras of Stanley-Reisner rings

We study the generation of the Frobenius algebra of the injective hull of a complete Stanley-Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K. E. Smith about the finite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Álvarez Montaner, Josep, Boix, Alberto F, Zarzuela Armengou, Santiago
Format: Text Resource
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the generation of the Frobenius algebra of the injective hull of a complete Stanley-Reisner ring over a field with positive characteristic. In particular, by extending the ideas used by M. Katzman to give a counterexample to a question raised by G. Lyubeznik and K. E. Smith about the finite generation of Frobenius algebras, we prove that the Frobenius algebra of the injective hull of a complete Stanley-Reisner ring can be only principally generated or infinitely generated. Also, by using our explicit description of the generators of such algebra and applying the recent work by M. Blickle about Cartier algebras and generalized test ideals, we are able to show that the set of F-jumping numbers of generalized test ideals associated to complete Stanley-Reisner rings form a discrete subset inside the non-negative real numbers