On Sums of Dilates
For k prime and A a finite set of integers with |A| ≥ 3(k − 1)2(k − 1)! we prove that |A + k · A| ≥ (k + 1)|A| − ⌈k(k + 2)/4⌉ where k · A = {ka: a ∈ A}. We also describe the sets for which equality holds.
Gespeichert in:
Veröffentlicht in: | Combinatorics, probability & computing probability & computing, 2009-11, Vol.18 (6), p.871-880 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For k prime and A a finite set of integers with |A| ≥ 3(k − 1)2(k − 1)! we prove that |A + k · A| ≥ (k + 1)|A| − ⌈k(k + 2)/4⌉ where k · A = {ka: a ∈ A}. We also describe the sets for which equality holds. |
---|---|
ISSN: | 0963-5483 1469-2163 |
DOI: | 10.1017/S0963548309990307 |