N-gram-based statistical machine translation versus syntax augmented machine translation: comparison and system combination

In this paper we compare and contrast two approaches to Machine Translation (MT): the CMU-UKA Syntax Augmented Machine Translation system (SAMT) and UPC-TALP N-gram-based Statistical Machine Translation (SMT). SAMT is a hierarchical syntax-driven translation system underlain by a phrase-based model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khalilov, Maxim, Rodríguez Fonollosa, José Adrián
Format: Text Resource
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we compare and contrast two approaches to Machine Translation (MT): the CMU-UKA Syntax Augmented Machine Translation system (SAMT) and UPC-TALP N-gram-based Statistical Machine Translation (SMT). SAMT is a hierarchical syntax-driven translation system underlain by a phrase-based model and a target part parse tree. In N-gram-based SMT, the translation process is based on bilingual units related to word-to-word alignment and statistical modeling of the bilingual context following a maximumentropy framework. We provide a stepby- step comparison of the systems and report results in terms of automatic evaluation metrics and required computational resources for a smaller Arabic-to-English translation task (1.5M tokens in the training corpus). Human error analysis clarifies advantages and disadvantages of the systems under consideration. Finally, we combine the output of both systems to yield significant improvements in translation quality.