N-gram-based statistical machine translation versus syntax augmented machine translation: comparison and system combination
In this paper we compare and contrast two approaches to Machine Translation (MT): the CMU-UKA Syntax Augmented Machine Translation system (SAMT) and UPC-TALP N-gram-based Statistical Machine Translation (SMT). SAMT is a hierarchical syntax-driven translation system underlain by a phrase-based model...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Text Resource |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we compare and contrast
two approaches to Machine Translation
(MT): the CMU-UKA Syntax Augmented
Machine Translation system (SAMT) and
UPC-TALP N-gram-based Statistical Machine
Translation (SMT). SAMT is a hierarchical
syntax-driven translation system
underlain by a phrase-based model and a
target part parse tree. In N-gram-based
SMT, the translation process is based on
bilingual units related to word-to-word
alignment and statistical modeling of the
bilingual context following a maximumentropy
framework. We provide a stepby-
step comparison of the systems and report
results in terms of automatic evaluation
metrics and required computational
resources for a smaller Arabic-to-English
translation task (1.5M tokens in the training
corpus). Human error analysis clarifies
advantages and disadvantages of the
systems under consideration. Finally, we
combine the output of both systems to
yield significant improvements in translation
quality. |
---|