Monte Carlo simulation of x-ray emission by kilovolt electron bombardment

A physical model for the simulation of x-ray emission spectra from samples irradiated with kilovolt electron beams is proposed. Inner shell ionization by electron impact is described by means of total cross sections evaluated from an optical-data model. A double differential cross section is propose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1998-06, Vol.83 (11), p.6038-6049
Hauptverfasser: Acosta, E., Llovet, X., Coleoni, E., Riveros, J. A., Salvat, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A physical model for the simulation of x-ray emission spectra from samples irradiated with kilovolt electron beams is proposed. Inner shell ionization by electron impact is described by means of total cross sections evaluated from an optical-data model. A double differential cross section is proposed for bremsstrahlung emission, which reproduces the radiative stopping powers derived from the partial wave calculations of Kissel, Quarles and Pratt [At. Data Nucl. Data Tables 28, 381 (1983)]. These ionization and radiative cross sections have been introduced into a general-purpose Monte Carlo code, which performs simulation of coupled electron and photon transport for arbitrary materials. To improve the efficiency of the simulation, interaction forcing, a variance reduction technique, has been applied for both ionizing collisions and radiative events. The reliability of simulated x-ray spectra is analyzed by comparing simulation results with electron probe measurements.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.367473