Modification of a FPGA-based GPS receiver for reflectometry applications (GNSS-R)

English: Lack of frequent and global global observations from space is currently a limiting factor Earth observation missions. In recent years, as a low-cost alternative, Global Navigation Satellite System's signals Reflectometry (GNSS-R) has stood a potential powerful remote sensing technique....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ribot Sanfélix, Miguel Ángel
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:English: Lack of frequent and global global observations from space is currently a limiting factor Earth observation missions. In recent years, as a low-cost alternative, Global Navigation Satellite System's signals Reflectometry (GNSS-R) has stood a potential powerful remote sensing technique. The existing research has shown that GNSS-R has the potential to give environmental scientist a low-cost, wide-coverage measurement network that will allow to derive geophysical parameters such as ocean altimetry, sea state or soil moisture. This data has the potential to greatly increase our knowledge of the Earth's environmental processes. During the last ten years, the Remote Sensing Laboratory of the Department of Signal Theory and Communications at the Univeristat Politècnica de Catalunya, has worked on the design and implementation of the appropriate receivers in order to track and process this GNSS-R signals in real-time to avoid the storage of huge volumes of raw data. One of its most remarkable efforts is the Passive Advanced Unit for ocean monitoring (PAU) project. In this work, the possibility of adapting an existing Global Position System (GPS) receiver for GNSS-R applications is explored. This GPS receiver is the Namuru-GPL a open source software receiver implemented for the Namuru development platform developed by the University of New South Wales Satellite Navigation and Positioning Laboratory (SNAP). A modified version of the Namuru-GPL has been implemented. This modified version of the receiver has been able to simultaneous track a C/A L1-band signal and a delayed version of it that simulated a reflected signal with the associated longer propagation path. In addition, the receiver has measured pseudorange differences with a tested resolution up 3 m with a single measurment in a controlled experimental scenario, thus validating the Namuru-GPL capabilities for GNSS-R altimetry applications. In addition, a new Acquisition Module has been developed. This module dramatically reduces the Namuru-GPL receiver average acquisition time from a few minutes to 2.5 s approximately, thanks to implementing the parallel code acquisition method. Moreover, the Acquisition Module requires low hardware resources and generates Delay Doppler Maps (DDMs). All the development process stages, including validation through testing of these proposed designs are summarized within this work. Castellano: La falta de observaciones frecuentes y a escala global desde el espacio es ac