Software caching techniques and hardware optimizations for on-chip local memories
Despite the fact that the most viable L1 memories in processors are caches, on-chip local memories have been a great topic of consideration lately. Local memories are an interesting design option due to their many benefits: less area occupancy, reduced energy consumption and fast and constant access...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite the fact that the most viable L1 memories in processors are caches,
on-chip local memories have been a great topic of consideration lately. Local
memories are an interesting design option due to their many benefits: less
area occupancy, reduced energy consumption and fast and constant access time.
These benefits are especially interesting for the design of modern multicore processors
since power and latency are important assets in computer architecture
today. Also, local memories do not generate coherency traffic which is important
for the scalability of the multicore systems.
Unfortunately, local memories have not been well accepted in modern processors
yet, mainly due to their poor programmability. Systems with on-chip local
memories do not have hardware support for transparent data transfers between
local and global memories, and thus ease of programming is one of the main
impediments for the broad acceptance of those systems. This thesis addresses
software and hardware optimizations regarding the programmability, and the
usage of the on-chip local memories in the context of both single-core and multicore
systems.
Software optimizations are related to the software caching techniques. Software
cache is a robust approach to provide the user with a transparent view
of the memory architecture; but this software approach can suffer from poor
performance. In this thesis, we start optimizing traditional software cache by
proposing a hierarchical, hybrid software-cache architecture. Afterwards, we develop
few optimizations in order to speedup our hybrid software cache as much
as possible. As the result of the software optimizations we obtain that our hybrid
software cache performs from 4 to 10 times faster than traditional software
cache on a set of NAS parallel benchmarks.
We do not stop with software caching. We cover some other aspects of the
architectures with on-chip local memories, such as the quality of the generated
code and its correspondence with the quality of the buffer management in local
memories, in order to improve performance of these architectures. Therefore,
we run our research till we reach the limit in software and start proposing optimizations
on the hardware level. Two hardware proposals are presented in this
thesis. One is about relaxing alignment constraints imposed in the architectures
with on-chip local memories and the other proposal is about accelerating the
management of local memories by providing hardware support for the |
---|