Control of power converter in modern power systems
A la portada consta el nom del programa interuniversitari: Joint Doctoral Programme in Electric Energy Systems [by the] Universidad de Málaga, Universidad de Sevilla, Universidad del País Vasco/Euskal Erriko Unibertsitatea i Universitat Politècnica de Catalunya Power system is undergoing an unpreced...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A la portada consta el nom del programa interuniversitari: Joint Doctoral Programme in Electric Energy Systems [by the] Universidad de Málaga, Universidad de Sevilla, Universidad del País Vasco/Euskal Erriko Unibertsitatea i Universitat Politècnica de Catalunya
Power system is undergoing an unpreceded paradigm shift: from centralized to distributed generation. As the renewable-based generations and battery storage systems are increasingly displacing conventional generations, it becomes more and. more difficult to maintain the stability and reliability of the grid by using only conventional generations. The main reason for the degradation of grid stability is the rapid penetration of nonconventional sources. These new generations interface with the grids through power electronics converters which are conventionally designed to maximize conversion efficiency and resource utilization. Indeed, these power converters only focus on their internal operation despite the grid conditions, which often worsens the grid operation. To overcome such a drawback, the grid-forming concept has been proposed for power converters, aiming to redesign the control of the power converters to enforce more grid-friendly behaviours such as inertia response and power oscillation damping to name a few. Despite the rich literature, actual adaptation of grid-forming controller in real-world applications is still rare because incentives for renewable power plants to provide services based on such advanced grid-forming functions were at best scarce. In the last years, however, several system operators have imposed new requirements and markets for grid-supporting services. In addition, the existing grid-forming controllers require modification to low-level control firmware of a power converter, which is often unrealistic due to the control hardware limitations as well as necessary testing and certifications.
To ensure a stable operation of a grid-forming converter under adverse operating conditions, a robust voltage sensorless current controller is developed in this PhD thesis. The proposed controller is able to handle most of the possible abnormal conditions of the grid such as impedance variations, unbalanced voltage; harmonics distortion. These abnormalities of the grid are mathematically represented using equivalent linear models such that they can be used for calculating the controller gains. Linear matrix inequality techniques are also used to facilitate parameter tuning. In fact, the |
---|