Characterization of alternative carrier selective materials and their application to heterojunction solar cells

Crystalline silicon (c-Si) solar cells can be considered a highly industrialized and mature product with a record conversion efficiency of 26.6%, not far from the practical limit of 29.4% (for single p/n junction devices). Accordingly, current research and development are addressing some remaining e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gerling Sarabia, Luis Guillermo
Format: Dissertation
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crystalline silicon (c-Si) solar cells can be considered a highly industrialized and mature product with a record conversion efficiency of 26.6%, not far from the practical limit of 29.4% (for single p/n junction devices). Accordingly, current research and development are addressing some remaining efficiency and cost limitations, including the reduction of (1) carrier recombination in highly doped materials, (2) parasitic absorption by narrow band gap films and (3) high temperature energy-intensive processing (especially critical for wafer thicknesses below 100 µm). In parallel, thin-film PV (e.g. organics and perovskites) have introduced a large number of dopant-free, hole- or electron-selective materials with optoelectronic properties that are comparable or superior to standard p- and n-doped layers in c-Si. Consequently, this thesis work explores novel heterojunctions between c-Si and these carrier-selective contact materials, putting special emphasis on TMO thin films whose wide energy band gap (>3 eV), surface passivation and large work function (>5 eV) characteristics permit their utilization as transparent/passivating/hole-selective front contacts in n-type c-Si (n-Si) solar cells. To this purpose, a comparative study among three thermally evaporated TMOs (V2O5, MoO3 and WO3) allowed correlating their chemical composition with thin film conductivity, optical transmittance, passivation potential and contact resistance on n-Si substrates. The variation of these properties with film thickness, air exposure or temperature annealings was also studied. Overall, V2Ox outperformed the other oxides by obtaining higher implied open-circuit voltages and lower contact resistances, translating into higher selectivities. Next, a thorough study of the TMO/c-Si interface was performed by electron microscopy, secondary ion-mass spectrometry and x-ray photoelectron spectroscopy, identifying two separate contributions to the observed passivation: (1) a chemical component, as evidenced by a thin SiOx interlayer naturally-grown by chemical reaction during TMO evaporation; and (2) a "field-effect" component, a result of a strong inversion (p+) of the n-Si surface, induced by the large work function difference between both materials. Considering all this, an energy band diagram for the TMO/SiOx/n-Si heterojunction was proposed, reflecting the possible physicochemical mechanisms behind c-Si passivation and carrier transport. Then, the characterized TMO/n-Si heterojunctions