Human-robot interaction and computer-vision-based services for autonomous robots
L'Aprenentatge per Imitació (IL), o Programació de robots per Demostració (PbD), abasta mètodes pels quals un robot aprèn noves habilitats a través de l'orientació humana i la imitació. La PbD s'inspira en la forma en què els éssers humans aprenen noves habilitats per imitació amb la...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | L'Aprenentatge per Imitació (IL), o Programació de robots per Demostració (PbD), abasta mètodes pels quals un robot aprèn noves habilitats a través de l'orientació humana i la imitació. La PbD s'inspira en la forma en què els éssers humans aprenen noves habilitats per imitació amb la finalitat de desenvolupar mètodes pels quals les noves tasques es poden transferir als robots. Aquesta tesi està motivada per la pregunta genèrica de "què imitar?", Que es refereix al problema de com extreure les característiques essencials d'una tasca. Amb aquesta finalitat, aquí adoptem la perspectiva del Reconeixement d'Accions (AR) per tal de permetre que el robot decideixi el què cal imitar o inferir en interactuar amb un ésser humà.
L'enfoc proposat es basa en un mètode ben conegut que prové del processament del llenguatge natural: és a dir, la bossa de paraules (BoW). Aquest mètode s'aplica a grans bases de dades per tal d'obtenir un model entrenat. Encara que BoW és una tècnica d'aprenentatge de màquines que s'utilitza en diversos camps de la investigació, en la classificació d'accions per a l'aprenentatge en robots està lluny de ser acurada. D'altra banda, se centra en la classificació d'objectes i gestos en lloc d'accions. Per tant, en aquesta tesi es demostra que el mètode és adequat, en escenaris de classificació d'accions, per a la fusió d'informació de diferents fonts o de diferents assajos.
Aquesta tesi fa tres contribucions: (1) es proposa un mètode general per fer front al reconeixement d'accions i per tant contribuir a l'aprenentatge per imitació; (2) la metodologia pot aplicar-se a grans bases de dades, que inclouen diferents modes de captura de les accions; i (3) el mètode s'aplica específicament en un projecte internacional d'innovació real anomenat Vinbot.
El Aprendizaje por Imitación (IL), o Programación de robots por Demostración (PbD), abarca métodos por los cuales un robot aprende nuevas habilidades a través de la orientación humana y la imitación. La PbD se inspira en la forma en que los seres humanos aprenden nuevas habilidades por imitación con el fin de desarrollar métodos por los cuales las nuevas tareas se pueden transferir a los robots. Esta tesis está motivada por la pregunta genérica de "qué imitar?", que se refiere al problema de cómo extraer las características esenciales de una tarea. Con este fin, aquí adoptamos la perspectiva del Reconocimiento de Acciones (AR) con el fin de permitir que el robot decida lo que hay que imitar o inferir al |
---|