On the design of high-efficiency RF Doherty power amplifiers
Power amplifiers (PAs) are one of the most crucial elements in wireless standards becasue they are the most power hungry subsystems. These elements have to face an important issue, which is the power efficiency, a fact related with the output back-off (OBO). But the OBO depends on the kind of modula...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Power amplifiers (PAs) are one of the most crucial elements in wireless standards becasue they are the most power hungry subsystems. These elements have to face an important issue, which is the power efficiency, a fact related with the output back-off (OBO). But the OBO depends on the kind of modulated signal, in proportion to the modulated signal peak-to-average power ratio (PAPR). The higuer is the data rate, the higer is the OBO, and consequently the lower is the efficiency. A low efficiency of PAs causes the waste of energy as heat. Furthermore, the trade-off between linearity and efficiency in PAs is another major issue.
To cope with the undesired circumstances producing efficiency degradation, the Doherty power amplifier (DPA) is one of the useful techniques which provide high efficiency for high PAPR of modern communication signals. Nevertheless, the limited bandwidth (BW) of this kind of PAs (about 10% of fractional bandwidth) and its importance (in modern wireless systems such as LTE, WiMAX, Wi-Fi and satellite systems) have encouraged the researchers to improve this drawback in recent years. Some typical BW limiting factors effect on the performance of DPAs: i) quarter-wave length transformers, ii) phase compensation networks in/output matching circuits, iii) offset lines and device non-idealities; The quarter-wave length transformers performs as an inverter impedance in the load modulation technique of DPAs. The future objective in designing DPAs is to decrease the impact of these issues.
In this context, this PhD-thesis is focused on improving fractional bandwidth of DPAs using the new methods that are related to impedance transformers instead of impedance inverters in the load modulation technique. This study is twofold. First, it is presented a novel DPA where a wideband GaN DPA in the 2.5 GHz band with an asymmetrical Wilkinson splitter. The impedance transformer of the proposed architecture is based on a matching network including a tapered line with multi-section transformer in the main stage. The BW of this DPA has ranged from 1.8 to 2.7 GHz. Plus, the obtained power efficiency (drain) is higher than 33% in the whole BW at both maximum and OBO power levels.
Second, based on the benefits of the Klopfenstein taper, a promising DPA design is proposed where a Klopfenstein taper replaces the tapered line. In fact, this substitution results on reducing the reflection coefficient of the transformer.
From a practical prototype realization of this |
---|