Bi-layer diaphragm walls : experimental and numerical analysis

Tesi per compendi de publicacions Leakage is a widespread problem associated with the construction of diaphragm walls whenever they are erected in water-bearing ground. The aim of the present research is to develop a new type of slurry wall: the bi-layer diaphragm wall (BL), which main objective is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Segura-Castillo, Luis
Format: Dissertation
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tesi per compendi de publicacions Leakage is a widespread problem associated with the construction of diaphragm walls whenever they are erected in water-bearing ground. The aim of the present research is to develop a new type of slurry wall: the bi-layer diaphragm wall (BL), which main objective is to tackle the aforementioned problem. The method to construct it is based on an existing solution: casting a second waterproof concrete layer against the diaphragm walls. In the BL technique, the second layer is made of steel fibre reinforced concrete (SFRC) sprayed over the conventional diaphragm wall (called Mono-Layer diaphragm wall (ML) in this thesis), including a waterproof admixture. The central idea is to maximize the functional attributes of the second layer, allowing it to play a structural role in addition to the waterproofing function.The proposed methodology is based on a combination of experimental works and numerical tools. A design method for the BL walls, which is based on an uncoupled structural-section model, is proposed. The method is later used to carry out different comparisons with ML walls and an exhaustive parametric analysis of the construction processes involved in the walls construction. The experimental campaign comprised test at two levels. At element level, the structural response of walls built in a real building located in Barcelona was studied and, at section level, the bond strength between concretes of cores extracted from the abovementioned walls was measured.The model at structural level, which is based on a finite element model, was contrasted with the results obtained in the experimental walls. The sectional analysis is taken from the specialized literature. With the complete structural-section model, the BL walls are analysed. The study shows that the main flexural resistance is provided by the first layer (the conventional diaphragm wall), providing the SFRC layer a secondary flexural resistance.For the geometrical ranges of the elements considered in the thesis (35 cm to 60 cm width first layer, and 10 cm width second layer) the increase in the cross-section ultimate bending resistance when it is strengthened by the SFRC layer is between 8% and 15%. This increase allows a reduction in the steel reinforcement of the first layer (up to 7.0% of the total flexural reinforcement) and, to some extent, it also collaborates with a displacement reduction (reducing up to 7.3% of the maximum displacements). It was also found that