On the Number of Cyclic Codes Over \(\mathbb{Z}_{31}\)

Let n be a positive integer, yn - 1 cyclotomic polynomial and Zq be a given finite field. In this study we determined the number of cyclic codes over \(\mathbb{Z}_{31}\). First, we partitioned the cyclotomic polynomial yn - 1 using cyclotomic cosets 31 mod n and factorized yn - 1 using case to case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Advances in Mathematics and Computer Science 2024-07, Vol.39 (7), p.55-69
Hauptverfasser: Ondiany, John Joseph O., Karieko, Obogi Robert, Mude, Lao Hussein, Monari, Fred Nyamitago
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let n be a positive integer, yn - 1 cyclotomic polynomial and Zq be a given finite field. In this study we determined the number of cyclic codes over \(\mathbb{Z}_{31}\). First, we partitioned the cyclotomic polynomial yn - 1 using cyclotomic cosets 31 mod n and factorized yn - 1 using case to case basis. Each monic divisor obtained is a generator polynomial and generate cyclic codes. The results obtained are useful in the field of coding theory and more especially, in error correcting codes.
ISSN:2456-9968
2456-9968
DOI:10.9734/jamcs/2024/v39i71912