On the Number of Cyclic Codes Over \(\mathbb{Z}_{31}\)
Let n be a positive integer, yn - 1 cyclotomic polynomial and Zq be a given finite field. In this study we determined the number of cyclic codes over \(\mathbb{Z}_{31}\). First, we partitioned the cyclotomic polynomial yn - 1 using cyclotomic cosets 31 mod n and factorized yn - 1 using case to case...
Gespeichert in:
Veröffentlicht in: | Journal of Advances in Mathematics and Computer Science 2024-07, Vol.39 (7), p.55-69 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let n be a positive integer, yn - 1 cyclotomic polynomial and Zq be a given finite field. In this study we determined the number of cyclic codes over \(\mathbb{Z}_{31}\). First, we partitioned the cyclotomic polynomial yn - 1 using cyclotomic cosets 31 mod n and factorized yn - 1 using case to case basis. Each monic divisor obtained is a generator polynomial and generate cyclic codes. The results obtained are useful in the field of coding theory and more especially, in error correcting codes. |
---|---|
ISSN: | 2456-9968 2456-9968 |
DOI: | 10.9734/jamcs/2024/v39i71912 |