Fixed Points of \(\xi\) - (\(\alpha\), \(\beta\))- Contractive Mappings in b-Metric Spaces
In the paper [Some new observations on Geraghty and \(\acute{C}\)iri\(\acute{c}\) type results in b-metric spaces, Mathematics, 7, (2019), doi: 10.3390/math7070643] Mlaiki et al. introduced (\(\alpha\), \(\beta\))-type contraction in order to generalize the contraction mapping defined by Pant and Pa...
Gespeichert in:
Veröffentlicht in: | Journal of Advances in Mathematics and Computer Science 2023-03, Vol.38 (6), p.6-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper [Some new observations on Geraghty and \(\acute{C}\)iri\(\acute{c}\) type results in b-metric spaces, Mathematics, 7, (2019), doi: 10.3390/math7070643] Mlaiki et al. introduced (\(\alpha\), \(\beta\))-type contraction in order to generalize the contraction mapping defined by Pant and Panicker. Also, in the paper [Some fixed point results in b- metric spaces and b-metric-like spaces with new contractive mappings, Axioms, 10(2), (2021), 15 pages, doi: 10.3390/axioms10020055] Jain and Kaur presented the concepts of \(\xi\) -contractive mappings. Now, the aim of the present article is to introduce \(\xi\) - (\(\alpha\), \(\beta\)) -contractive mappings in b-metric spaces by combining the concepts (\(\alpha\), \(\beta\))-type contraction and \(\xi\)-contractive mappings. Also, we establish some fixed point results for newly defined mappings. Our results generalize various theorems in literature. In support, we provide an example. |
---|---|
ISSN: | 2456-9968 2456-9968 |
DOI: | 10.9734/jamcs/2023/v38i61764 |