MAXIMAL AMENABILITY OF THE GENERATOR SUBALGEBRA IN q-GAUSSIAN VON NEUMANN ALGEBRAS

In this article, we develop a structural theorem for the q-Gaussian algebras, namely, we construct a Riesz basis for the q-Fock space in the spirit of Rădulescu. As an application, we show that the generator subalgebra is maximal amenable inside the q-Gaussian von Neumann algebra for any real number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 2018-06, Vol.80 (1), p.125-152
Hauptverfasser: PAREKH, SANDEEPAN, SHIMADA, KOICHI, WEN, CHENXU
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 1
container_start_page 125
container_title Journal of operator theory
container_volume 80
creator PAREKH, SANDEEPAN
SHIMADA, KOICHI
WEN, CHENXU
description In this article, we develop a structural theorem for the q-Gaussian algebras, namely, we construct a Riesz basis for the q-Fock space in the spirit of Rădulescu. As an application, we show that the generator subalgebra is maximal amenable inside the q-Gaussian von Neumann algebra for any real number q with | q | < 1 9 .
doi_str_mv 10.7900/jot.2017jun28.2167
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_7900_jot_2017jun28_2167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27226217</jstor_id><sourcerecordid>27226217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-10e2bcedc07c0b7155eb3497754a387b99e791bed626254db579aef6529a8f7b3</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhYMoOKd_QBDyBzqTt2nf5jIbWVdoU-iH6FVpuhQs6rSdF_57NzZ2dW7Ocw48hDxytkDJ2POw2y-AcRx-vyBaAA_xisx4JLiHKMQ1mTEfpScYiFtyN00DYz5nCDNSZOo1yVRKVaaNWiZpUr3RfE2rjaaxNrpQVV7Qsl6qNNbLQtHE0B8vVnVZJsrQl9xQo-tMGUPPjfKe3PTtx-Qezjkn9VpXq42X5nGyUqnXQSj3HmcObOe2HcOOWeRB4KwvJGIgWj9CK6VDya3bhhBCILY2QNm6PgxAtlGP1p8TOO12426aRtc33-P7Zzv-NZw1RyvNwUpzsdIcrRygpxM0TPvdeCEA4fDC0f8HaaNZfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MAXIMAL AMENABILITY OF THE GENERATOR SUBALGEBRA IN q-GAUSSIAN VON NEUMANN ALGEBRAS</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>PAREKH, SANDEEPAN ; SHIMADA, KOICHI ; WEN, CHENXU</creator><creatorcontrib>PAREKH, SANDEEPAN ; SHIMADA, KOICHI ; WEN, CHENXU</creatorcontrib><description>In this article, we develop a structural theorem for the q-Gaussian algebras, namely, we construct a Riesz basis for the q-Fock space in the spirit of Rădulescu. As an application, we show that the generator subalgebra is maximal amenable inside the q-Gaussian von Neumann algebra for any real number q with | q | &lt; 1 9 .</description><identifier>ISSN: 0379-4024</identifier><identifier>EISSN: 1841-7744</identifier><identifier>DOI: 10.7900/jot.2017jun28.2167</identifier><language>eng</language><publisher>Theta Foundation</publisher><ispartof>Journal of operator theory, 2018-06, Vol.80 (1), p.125-152</ispartof><rights>Copyright by THETA, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-10e2bcedc07c0b7155eb3497754a387b99e791bed626254db579aef6529a8f7b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27226217$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27226217$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>PAREKH, SANDEEPAN</creatorcontrib><creatorcontrib>SHIMADA, KOICHI</creatorcontrib><creatorcontrib>WEN, CHENXU</creatorcontrib><title>MAXIMAL AMENABILITY OF THE GENERATOR SUBALGEBRA IN q-GAUSSIAN VON NEUMANN ALGEBRAS</title><title>Journal of operator theory</title><description>In this article, we develop a structural theorem for the q-Gaussian algebras, namely, we construct a Riesz basis for the q-Fock space in the spirit of Rădulescu. As an application, we show that the generator subalgebra is maximal amenable inside the q-Gaussian von Neumann algebra for any real number q with | q | &lt; 1 9 .</description><issn>0379-4024</issn><issn>1841-7744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAYhYMoOKd_QBDyBzqTt2nf5jIbWVdoU-iH6FVpuhQs6rSdF_57NzZ2dW7Ocw48hDxytkDJ2POw2y-AcRx-vyBaAA_xisx4JLiHKMQ1mTEfpScYiFtyN00DYz5nCDNSZOo1yVRKVaaNWiZpUr3RfE2rjaaxNrpQVV7Qsl6qNNbLQtHE0B8vVnVZJsrQl9xQo-tMGUPPjfKe3PTtx-Qezjkn9VpXq42X5nGyUqnXQSj3HmcObOe2HcOOWeRB4KwvJGIgWj9CK6VDya3bhhBCILY2QNm6PgxAtlGP1p8TOO12426aRtc33-P7Zzv-NZw1RyvNwUpzsdIcrRygpxM0TPvdeCEA4fDC0f8HaaNZfA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>PAREKH, SANDEEPAN</creator><creator>SHIMADA, KOICHI</creator><creator>WEN, CHENXU</creator><general>Theta Foundation</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>MAXIMAL AMENABILITY OF THE GENERATOR SUBALGEBRA IN q-GAUSSIAN VON NEUMANN ALGEBRAS</title><author>PAREKH, SANDEEPAN ; SHIMADA, KOICHI ; WEN, CHENXU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-10e2bcedc07c0b7155eb3497754a387b99e791bed626254db579aef6529a8f7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PAREKH, SANDEEPAN</creatorcontrib><creatorcontrib>SHIMADA, KOICHI</creatorcontrib><creatorcontrib>WEN, CHENXU</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PAREKH, SANDEEPAN</au><au>SHIMADA, KOICHI</au><au>WEN, CHENXU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAXIMAL AMENABILITY OF THE GENERATOR SUBALGEBRA IN q-GAUSSIAN VON NEUMANN ALGEBRAS</atitle><jtitle>Journal of operator theory</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>80</volume><issue>1</issue><spage>125</spage><epage>152</epage><pages>125-152</pages><issn>0379-4024</issn><eissn>1841-7744</eissn><abstract>In this article, we develop a structural theorem for the q-Gaussian algebras, namely, we construct a Riesz basis for the q-Fock space in the spirit of Rădulescu. As an application, we show that the generator subalgebra is maximal amenable inside the q-Gaussian von Neumann algebra for any real number q with | q | &lt; 1 9 .</abstract><pub>Theta Foundation</pub><doi>10.7900/jot.2017jun28.2167</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0379-4024
ispartof Journal of operator theory, 2018-06, Vol.80 (1), p.125-152
issn 0379-4024
1841-7744
language eng
recordid cdi_crossref_primary_10_7900_jot_2017jun28_2167
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals
title MAXIMAL AMENABILITY OF THE GENERATOR SUBALGEBRA IN q-GAUSSIAN VON NEUMANN ALGEBRAS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAXIMAL%20AMENABILITY%20OF%20THE%20GENERATOR%20SUBALGEBRA%20IN%20q-GAUSSIAN%20VON%20NEUMANN%20ALGEBRAS&rft.jtitle=Journal%20of%20operator%20theory&rft.au=PAREKH,%20SANDEEPAN&rft.date=2018-06-01&rft.volume=80&rft.issue=1&rft.spage=125&rft.epage=152&rft.pages=125-152&rft.issn=0379-4024&rft.eissn=1841-7744&rft_id=info:doi/10.7900/jot.2017jun28.2167&rft_dat=%3Cjstor_cross%3E27226217%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=27226217&rfr_iscdi=true