MAXIMAL AMENABILITY OF THE GENERATOR SUBALGEBRA IN q-GAUSSIAN VON NEUMANN ALGEBRAS
In this article, we develop a structural theorem for the q-Gaussian algebras, namely, we construct a Riesz basis for the q-Fock space in the spirit of Rădulescu. As an application, we show that the generator subalgebra is maximal amenable inside the q-Gaussian von Neumann algebra for any real number...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2018-06, Vol.80 (1), p.125-152 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we develop a structural theorem for the q-Gaussian algebras, namely, we construct a Riesz basis for the q-Fock space in the spirit of Rădulescu. As an application, we show that the generator subalgebra is maximal amenable inside the q-Gaussian von Neumann algebra for any real number q with
|
q
|
<
1
9
. |
---|---|
ISSN: | 0379-4024 1841-7744 |
DOI: | 10.7900/jot.2017jun28.2167 |