MAXIMAL AMENABILITY OF THE GENERATOR SUBALGEBRA IN q-GAUSSIAN VON NEUMANN ALGEBRAS

In this article, we develop a structural theorem for the q-Gaussian algebras, namely, we construct a Riesz basis for the q-Fock space in the spirit of Rădulescu. As an application, we show that the generator subalgebra is maximal amenable inside the q-Gaussian von Neumann algebra for any real number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 2018-06, Vol.80 (1), p.125-152
Hauptverfasser: PAREKH, SANDEEPAN, SHIMADA, KOICHI, WEN, CHENXU
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we develop a structural theorem for the q-Gaussian algebras, namely, we construct a Riesz basis for the q-Fock space in the spirit of Rădulescu. As an application, we show that the generator subalgebra is maximal amenable inside the q-Gaussian von Neumann algebra for any real number q with | q | < 1 9 .
ISSN:0379-4024
1841-7744
DOI:10.7900/jot.2017jun28.2167