AN INVARIANT SUBSPACE THEOREM AND INVARIANT SUBSPACES OF ANALYTIC REPRODUCING KERNEL HILBERT SPACES. I
Let T be a C·0-contraction on a Hilbert space H and S be a non-trivial closed subspace of H. We prove that S is a T-invariant subspace of H if and only if there exists a Hilbert space D and a partially isometric operator $\mathrm{\Pi }:{\mathrm{H}}_{\mathcal{D}}^{2}\left(\mathrm{\mathbb{D}}\right)\t...
Gespeichert in:
Veröffentlicht in: | Journal of operator theory 2015-05, Vol.73 (2), p.433-441 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let T be a C·0-contraction on a Hilbert space H and S be a non-trivial closed subspace of H. We prove that S is a T-invariant subspace of H if and only if there exists a Hilbert space D and a partially isometric operator $\mathrm{\Pi }:{\mathrm{H}}_{\mathcal{D}}^{2}\left(\mathrm{\mathbb{D}}\right)\to \mathcal{H}$ such that ΠMz = TΠ and that S = ran Π, or equivalently, PS = ΠΠ*. As an application we completely classify the shift-invariant subspaces of analytic reproducing kernel Hilbert spaces over the unit disc. Our results also include the case of weighted Bergman spaces over the unit disk. |
---|---|
ISSN: | 0379-4024 1841-7744 |
DOI: | 10.7900/jot.2014jan29.2042 |