AN INVARIANT SUBSPACE THEOREM AND INVARIANT SUBSPACES OF ANALYTIC REPRODUCING KERNEL HILBERT SPACES. I

Let T be a C·0-contraction on a Hilbert space H and S be a non-trivial closed subspace of H. We prove that S is a T-invariant subspace of H if and only if there exists a Hilbert space D and a partially isometric operator $\mathrm{\Pi }:{\mathrm{H}}_{\mathcal{D}}^{2}\left(\mathrm{\mathbb{D}}\right)\t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of operator theory 2015-05, Vol.73 (2), p.433-441
1. Verfasser: SARKAR, JAYDEB
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let T be a C·0-contraction on a Hilbert space H and S be a non-trivial closed subspace of H. We prove that S is a T-invariant subspace of H if and only if there exists a Hilbert space D and a partially isometric operator $\mathrm{\Pi }:{\mathrm{H}}_{\mathcal{D}}^{2}\left(\mathrm{\mathbb{D}}\right)\to \mathcal{H}$ such that ΠMz = TΠ and that S = ran Π, or equivalently, PS = ΠΠ*. As an application we completely classify the shift-invariant subspaces of analytic reproducing kernel Hilbert spaces over the unit disc. Our results also include the case of weighted Bergman spaces over the unit disk.
ISSN:0379-4024
1841-7744
DOI:10.7900/jot.2014jan29.2042